A Generalization of Binomial Queues
نویسنده
چکیده
We give a generalization of binomial queues involving an arbitrary sequence (mk)k=0;1;2;::: of integers greater than one. Diierent sequences lead to diierent worst case bounds for the priority queue operations, allowing the user to adapt the data structure to the needs of a speciic application. Examples include the rst priority queue to combine a sub-logarithmic worst case bound for Meld with a sub-linear worst case bound for Delete min.
منابع مشابه
Optimal Purely Functional Priority Queues
Brodal recently introduced the first implementation of imperative priority queues to support findMin, insert, and meld in O(1) worst-case time, and deleteMin in O(log n) worst-case time. These bounds are asymptotically optimal among all comparison-based priority queues. In this paper, we adapt Brodal’s data structure to a purely functional setting. In doing so, we both simplify the data structu...
متن کاملA Noncommutative Weight-dependent Generalization of the Binomial Theorem
A weight-dependent generalization of the binomial theorem for noncommuting variables is presented. This result extends the well-known binomial theorem for q-commuting variables by a generic weight function depending on two integers. For two special cases of the weight function, in both cases restricting it to depend only on a single integer, the noncommutative binomial theorem involves an expan...
متن کاملBinomial Heaps and Skew Binomial Heaps
We implement and prove correct binomial heaps and skew binomial heaps. Both are data-structures for priority queues. While binomial heaps have logarithmic findMin, deleteMin, insert, and meld operations, skew binomial heaps have constant time findMin, insert, and meld operations, and only the deleteMin-operation is logarithmic. This is achieved by using skew links to avoid cascading linking on ...
متن کاملParallel priority queues based on binomial heaps q
We present an optimal parallel implementation of a meldable priority queue based on the binomial heap data structure. Our main result is an interesting application of the parallel computation of carry bits in a full adder logic to binomial heaps, thus optimizing the parallel time complexity of the Union (often called melding) of two queues. The Union operation as well as Insert, Min, Extract-Mi...
متن کاملOn the Properties of Fibonacci Numbers with Binomial Coefficients
In this study, new properties of Fibonacci numbers is given. Also, generalization of some properties of Fibonacci numbers is investigated with binomial coefficiations. Mathematics Subject Classification: 11B39, 11B65
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Process. Lett.
دوره 57 شماره
صفحات -
تاریخ انتشار 1996